SCANDINAVIAN HISTORY/HIST 332-1
WINTER 2011
Tues., 5-7:30pm; 348 MARB
Gerald M. Haslam, Instructor
2107 JFSB; email haslam1@aol.com
(Consultations by appointment)

COURSE OBJECTIVES:

1) learn about the big picture of Scandinavian history from prehistoric times through to the Viking Age, Middle Ages/Renaissance to the Era of Swedish Great Power Politics and Great Northern War, in the 1600s and early 1700s; then continue with the picture, from the period of the Napoleonic Wars (esp. career of Napoleon’s erstwhile general Bernadotte, later King of Sweden-Norway), Industrialization of the North, nationalistic movements and periods of Swedish-Norwegian and Russian-Finnish union, through the World Wars of the last century and establishment of the Modern Welfare State (since the 1920s);

2) conduct meaningful research on a Scandinavian topic of interest, and write about it in a narrative and reflective style, in two parts; and resultanty gain a deeper understanding of the contribution of the Scandinavian countries to world history (everybody’s heard of the Vikings; and Finnish Winter War against the Soviets in 1939; also the most successful Winter Olympics ever, in Norway, 1994. The Danish philosopher Kierkegaard is the father of Existentialism; dramatist Ibsen, a Norwegian, the playwright without peer in the history of modern theater.

For those who wish to plunge even deeper into Scandinavian culture, become a member of the Society for the Advancement of Scandinavian Study/SASS which publishes the highly respected journal SCANDINAVIAN STUDIES (at BYU); membership $30/year.
HIST 332 also counts toward the BYU minor in Scandinavian Studies.

REQUIRED TEXTS:

T.K. Derry, A HISTORY OF SCANDINAVIA (repr. 2005); denoted “Derry” on schedule, so read chapters indicated for var. weeks of the course;

Birgit and Peter Sawyer, MEDIEVAL SCANDINAVIA: FROM CONVERSION TO REFORMATION, ca. 800-1500 (1993); denoted “Medieval” on schedule.

OPTIONAL TEXTS are in the bookstore and cover major topics/figures, incl. the Vikings, Danish relationship to the English Beowulf, Kierkegaard, Scandinavian culture/art/design/literature/poetry/drama, Scandinavian political neutrality.

EXAMS: Two essay-question exams including a few short identifications (5-6 ll. each): each essay requires a written response of about 10 mins. and the questions have to do with major subjects discussed in the lectures and drawn from required readings. Cover
your bases by obtaining a copy of somebody's notes if you miss class. In assigning a grade, I'll look for informed brevity, clear exposition and understanding of key movements and periods and how they affected life in the North, and applicable dates/time periods. PLEASE BRING A SMALL BYU BLUEBOOK AND DARK-INK PEN TO THE EXAMS.

PAPER: You're required to submit a 12pp.-long paper, double-spaced, DUE LAST DAY OF CLASS (which for us is Tues., 4/12), on an historical Scandinavian topic in which you exhibit independent thinking and ask and seek to resolve questions; and base your research on ca. 15 sources, mostly journal articles, exhibiting contrasting points of view. Example topics: a) "The Sagas – are they reliable historical documents?"; b) "Swedish Socialism – successful model for the world at large?". In grading the paper, I'll consider logical conceptualization of the question, neatness, confrontational approach to the readings, clear analysis.

EACH STUDENT'S FINAL GRADE FOR THE COURSE will be based on three components of midterm, paper and final exam. Each will be assigned a letter grade and count about 1/3 of the total grade. Obviously attendance is extremely important as many exam questions are drawn from the lectures.

CALENDAR

1/4 Intro: "Rus" Vikings and Western Vikings; Derry 1-2; Medieval 1-3

1/11 Christianity in the North; Roman Catholic heritage; Derry 3; Medieval 4-5

1/18 High Middle Ages Scandinavia; Kalmar Union; Derry 4; Medieval 6-8

1/25 Kalmar Union cont.; Reformation; Derry 5; Medieval 9-10

2/1 Scandinavia to 1660; Christian IV of Denmark; Derry 6

2/8 Swedish Great Power Politics; Great Northern War to 1720, and aftermath; Derry 7-8

2/15 **MIDTERM; bring small BYU bluebook and dark-ink pen

2/22 **Monday instruction; no class

3/1 Sweden after Chas. XII; The Swedish Gustavs; Derry 9

3/8 Napoleonic Wars; Norway’s Union with Sweden; Derry 10

3/15 Industrialization of the North; 19th-cent. Liberalism; Derry 11-12 (see also recommended Kierkegaard treatise); Derry 11-12
3/22 Social Reforms; Foreign Policy, esp. Schleswig-Holstein; Nationalism (esp. Norway and Finland); WWI; Derry 13-14

3/29 Interwar Years; Swedish Welfare State Model; WWII; Derry 15-16 (also recommended Engle and Paananen Finnish Winter War book)

4/5 No class;

4/12 Last day of class; Common Developments Since WWII; Research paper due

4/16 **Sat., FINAL EXAM (in the classroom); 5:45-7:45pm; finals will be available for pick-up in the History office within a week, 2130 JFSB.
I am in a dark room at the University of Birmingham in England, looking at a 10,000-year-old landscape projected on a wall. The map in front of me is 12 feet across, and glows in unfocused luminous orange. When I put on battery-operated polarizing glasses, it jumps sharply into three dimensions.

"If you hold a tracker," says geologist Simon Fitch, handing me a gadget that looks like a wired staple gun, "the image knows where you are, and you can walk into the data." Suddenly I feel as if I'm flying up a huge river system the researchers have named the Shotton, after a famous Birmingham geologist and archaeologist. "Imagine," says Fitch, "a tall graduate student wearing a white T-shirt and jeans, crossing that channel in a log boat."

Through the millennia that hominins have been in northern Europe, sea levels have risen and fallen as glaciers have retreated and advanced, periodically exposing land the size of California around Britain's shores. Often this land supported a variety of terrestrial life, from mammoths to people, in environments ranging from tundra to forest. Deep under the North Sea today are likely to be perfectly preserved plant and animal remains, human bones, and stone tools, sealed in stratified deposits—a historic archive of rare value now threatened by industrial activity.

The map I am flying through is only part of a visualization of 9,000 square miles of this ancient land surface now beneath the sea and buried under layers of mud, sand, and gravel. Seismic waves generated by oil prospectors reflect off these layers, revealing hills and valleys below and unrelated to the modern sea floor.

"No one knows where the great European rivers once flowed," says Vincent Gaffney, a driven, ebullient archaeologist. He plans to resolve that. Early results from the North Sea Palaeolandscapes project—the first attempt to map this chilly Atlantis—promise to transform the way we think about north European prehistory. The techniques developed here could do the same around the world.

"You'd have to go to Mars to name rivers," Gaffney says. "And here we could be doing it every day!"

The project was inspired by Pilgrim E. Lockwood, master of the North Sea trawler Colinda. In 1931, while night-fishing 25 miles off the Norfolk coast, Lockwood hauled up a lump of "moorlog," a dark, peaty material from the sea bottom. When he cut it, his spade bounced off a finely carved bone harpoon point similar to those found at Mesolithic hunting sites on mainland Britain, Denmark, and Sweden. It has recently been radiocarbon dated to 14,000 years ago.

The harpoon point reminded archaeologists that the bed of the southern North Sea was once dry and inhabited, but it had been little more than a curiosity. It was impossible to excavate the site, and scholars had long assumed that sea currents would have destroyed the stratigraphy anyway. Besides, it was believed that the submerged area was more of a land bridge, a place of nomads and movement, than a site of enduring settlement.

In 2000, Gaffney, professor of landscape archaeology and geomatics at Birmingham's Insti-
Fine-scale seismic data have allowed archaeologists to develop a detailed 3-D model (left) of where the Arun River in southern England flowed when the sea level was lower and the English Channel was dry land. This model helps guide researchers as they retrieve samples from the ocean floor (above) in search of artifacts, fossils, or vegetation that can help reconstruct the history of the ancient landscape.
tute for Archaeology and Antiquity, discussed Lockwood’s find with Fitch, who was planning his doctoral research. Suppose, they wondered, there really was a well-preserved hunting camp off the present coast that could be studied with modern techniques. North Sea submarine landscapes and geology had been intensively surveyed: The area is a major, though declining, source of oil and gas for Britain and Norway, and is still a source of dredged sand and gravel for construction. There must be mounds of data. How could they access it?

Fitch’s first academic degree was in geology. His old advisor, Kenneth Thomson, had recently joined the faculty at Birmingham. So Fitch and Gaffney set off across the campus to the School of Geography, Earth and Environmental Sciences. “We think there’s oil data,” Gaffney told Thomson. “Can we do it?”

Gaffney and Thomson are now principal investigators on the North Sea project, and Fitch is their senior research assistant. On the wall at the back of the large room, partly obscured by the silhouettes of tables, computers, and loops of cable, shies the virtual map. It is like, well, visiting Mars, and it is grounded in hard data—more than 60 original seismic surveys from 20 different data owners, obtained through a research agreement between the university and Petroleum Geo-Services, which banks industry data. It is the largest contiguous archaeo-geophysical survey ever attempted.

Petroleum industry survey ships regularly tow rows of seismic sensors, which generate data used to produce images of vertical slices through the seabed. From these, the researchers created a digital model in 3-D and extracted horizontal slices. Now they can identify the patterns of ancient rivers and their tributaries—and the software can follow the channels in 3-D. No one had seen these landscapes for thousands of years, and until this model took shape, researchers knew almost nothing about what was down there. As tangible as it appears, and as heady as it is to name the rivers of ancient Europe (they have resisted, says Gaffney, university suggestions to commemorate the vice-chancellor this way), the model raises as many questions as it answers. It cannot itself be dated,sampled for ecological data, or surveyed for artifacts and fossils. Samples from the sea floor, extracted from existing cores, can provide some ecological data, but are unlikely to say much about human habitation. For that, Gaffney hopes to take new cores from sites they identify as those most likely to harbor traces of human habitation, such as near the erstwhile Shotton River, where hunters and fishers might have camped.

PREHISTORIC ARTIFACTS AND FOSSILS from the bottom of the North Sea are helping create a picture of ancient Britain. To see the latest finds, I travel to Salisbury, Wiltshire, to a storeroom of the consulting firm Wessex Archaeology. Maritime archaeologist Victoria Cooper, her bright blue waterproof jacket barely concealing her six-month pregnancy, throws the lights on to reveal a pen full of diving equipment. Stacked along one side are blue plastic boxes. From one she pulls a mammoth tusk. Tap water runs off its smooth, caramel-colored surface. This is fresh ivory, preserved for at least 10,000 years beneath the waves, and soaking will remove the sea salts. Like the abundant bricklike mammoth teeth common in the region, this is ancient history you can hold in your hands, a biotic remnant of the North Sea paleolandscape.

When the first hominins roamed northern Europe 700,000 years ago, the water that now separates England from

This slice through a cube of seismic data shows a tributary of a river system related to the ancient Shotton River. The shores may have provided inviting places for settlement.
Underwater and at Risk

Former land surfaces beneath the North Sea cover vast amounts of space and time, and they are being destroyed. The waters around Britain are seething with industry—trawling, aggregate dredging, waste disposal, construction of platforms for wind farms and oil and gas recovery, and the laying of cables and pipelines.

Archaeologist Nic Fleming of Southampton University's National Oceanography Centre says the approach to archaeological mitigation used on dry land has already failed on submerged continental shelves in the United States. "By the early 1980s, he wrote in a government report, "the situation was attracting severe criticism because hundreds of millions of dollars had been spent, and no prehistoric artifacts had ever been found." He suggested that the principle of preservation or excavation of threatened settlement remains is inappropriate at sea because of the huge costs. English Heritage, which is responsible for implementing heritage legislation in England, recognizes the "need for fundamental research and survey" in this area.

Britain's offshore oil and gas industry is regulated by the government's Department of Trade and Industry. Since 1999 exploration licenses have required strategic environmental assessments. Sands and gravels, on the other hand, are owned by the government; since 1989 new dredging applications have had to be accompanied by environmental impact assessments. Antony Firth, Wessex Archaeology's head of coastal and marine projects, says collaboration between archaeologists and industry is leading to significant discoveries while improving the sustainability of aggregate dredging. "These are exciting times," he says, "and the best is yet to come."

For their part, marine businesses often support archaeology, and show interest in what researchers are revealing. A good illustration is the Aggregates Levy Sustainability Fund, introduced by the British government in 2002. A tax on aggregate extraction, the fund is not welcomed by all—it cost the industry over $50 million in its first two years, and some archaeologists see commercial money as "tainted"—but it has nonetheless provided substantial aid to heritage causes. Birmingham University's North Sea program is funded by the aggregates tax, and Wessex Archaeology applied to the fund for support of its high-resolution submarine survey.

France was a bay, and major rivers such as the Thames and the Rhine ultimately flowed west to the Atlantic Ocean. In time the sea broke through to create the English Channel. As sea levels rose and fell with the changing climate over ensuing millennia, the channel alternately flooded land and isolated Britain, and then once again exposed the plains to habitation. In fact, because much of the land is so flat, Wessex and other researchers are reaching an important conclusion, also suspected in the North Sea, that rising channel waters would have moved fast enough for people to notice; climate-induced floods would have rapidly changed food supplies and might even have forced migrations along evolving river courses.

Today rivers that were once tributaries of larger, lost waterways run out to sea through the chalk hills of southern England. Wessex targeted one river system, the Arun River in West Sussex, for their own small-scale, high-resolution submarine survey that includes samples from the ocean floor. They hope to open a small window on submerged prehistoric Britain that is as fine-grained as Gaffney's is expansive.

Wessex conducted an intensive seismic survey where they thought the Arun riverbed might continue under the English Channel from the coast. With 170 miles of data, their software picked out a classic paleochannel 500 feet across. It was an ancient river valley, now filled with fine sediments, that apparently cut through layers including peats: a seemingly intact ancient riverbank.

"Archaeologists had disputed the survival of older surfaces," says Wessex's Stuart Leather, yet here was the lost Arun, keeping its own ancient course with no regard for the slopes and valleys of the modern seabed. Leather's next step was to take out a core with a machine called a vibrocore, a 20-foot-long tube topped with a vibrating unit that wiggles its way into the sediments.

The cores produced ample plant fragments, pollen, and remains of microscopic plants and animals. With several radiocarbon dates from this material, Leather began to reconstruct a detailed picture of riverside life 10,000 years
ago. The return of vegetation at the end of the Ice Age could be seen in the core. One sample appeared to show a prior cold climate environment, with a little birch, pine, oak, and hazel pollen that drifted in from afar. Later came a freshwater reed swamp and a salt marsh beside the river: a rich environment for Mesolithic hunter-fisher-gatherers. Benthic grabbing, a less delicate sampling method in which material is scooped from the sea floor, also turned up peat, oak charcoal, and three flint artifacts—simple waste flakes.

Computer artists working with Wessex used the data to create an animation of the ancient Arun landscape, showing hunters stalking a deer in the forest, a couple climbing into a log boat, and a child playing in the sand. “We found evidence for all of this,” says Leather. “Every plant we can prove.” The animation also shows a figure leaning over a basket of fish. “We’re not sure,” he adds, “about the woman’s dress.”

Perhaps, suggests Leather, this area was the core of human activity in ancient Britain, while the modern landmass was possibly more marginal. Researchers, then, may have long been looking in the wrong place for the most important evidence of prehistoric humans in the region. Mesolithic people following herds of elk, moose, or caribou; scrounging the shores for shellfish; and paddling boats out to sea for line fishing may indeed have favored the rivers and coasts—much of them now under the sea—over the remote hills and moors where most archaeologists have been seeking their evidence. Indeed, the huge braided estuaries revealed by Gaffney and Thomson’s team would have offered a particularly rich environment unmatched in modern Europe.

“Archaeologists call this flooded land in the North Sea a bridge between Britain and Europe,” says Gaffney, laughing. “No! It was the primary area of human habitation. It must’ve been.”

Nearly a century ago, geologist Clement Reid studied bones and trees brought up from the North Sea by oyster dredgers and trawlers. Reid, says Gaffney, understood that the finds represented a significant landmass. But he found that neither geologists nor archaeologists could be persuaded to take interest.

Wessex Archaeology created an animated digital visualization of the paleolandcape of the Arun River. The plant life represented in this frame from the animation is based on evidence taken from sediment cores.

The antiquary,” wrote Reid in his Submerged Forests (“It’s in the university library,” says Gaffney. “The last time somebody borrowed it was before I was born”), “should find the remains of ancient races of man, sealed up with his weapons and tools. . . . He ought to here find also implements of wood, basketwork, or objects in leathér, such as are so rarely preserved in deposits above the water-level.”

Current research has vindicated Reid, and established ways of identifying submarine archaeological deposits. On land, their full potential would be released through detailed excavation of large areas, where hearths, postholes, and perhaps butchery sites and human burials could be exposed and studied. For now, this is practically and financially impossible at the bottom of a cold, stormy sea. The surveys continue.

“Out there,” says Gaffney, imagining the notoriously rough waters of the North Sea, “is probably the best-preserved prehistoric landscape in Europe. But it’s not the only one.” The Black Sea, the Gulf of Mexico, the Bering Sea, portions of all of them were once dry and ideal for people. Often these same areas have oil, and the same kind of data that Gaffney used to map the North Sea shelf. There are more flooded worlds to discover. And great rivers to name.

Mike Pitts is editor of British Archaeology.
Northern Exposition

BY SCOTT FABER

More than 6,000 years ago, on a bleak island in the Norwegian Arctic, Stone Age fishermen carved some of the oldest images of boats.

IN THE Icy Arctic Ocean to their north and the Norwegian Sea to their west, Scandinavians have been known as hardy seafarers since at least the eighth century, when the Vikings first went marauding. But it now seems that the roots of the Scandinavian naval tradition go back much further—to more than six millennia ago. On an island off the coast of northernmost Norway, 250 miles above the Arctic Circle, archeologists have uncovered the most northerly collection of rock art yet known: carved images of Stone Age humans and animals, and Europe's oldest images of boats.

Archeologist Anders Hesjedal and his colleagues from Norway's Tromsø Museum announced the results of their excavation last year. At Slettnes on the island of Sørøya, Hesjedal's team found a scattering of small boulders bearing more than a hundred sparrow-size carvings of animals—reindeer, birds, elk, bear claws—and five images of boats. Each boat had a prow in the shape of an elk's head, and humans could be seen either in or close to the vessels.

The archeologists know roughly how old the images are from the layer of gravel that had covered the boulders. The gravel layer, which is found all along the coast of Norway, was deposited some 6,000 years ago, after the last ice sheets of the Ice Age had melted and the sea had reached its highest level. The carvings must have been made after the boulders were uncovered by the retreating ice but before they were covered again by the water and gravel. The boulders were raised to their present high and dry position by the retreating land: freed from the depressing weight of the ice sheet, it has been slowly rising for the past 9,000 years.

Hesjedal thus estimates that the Sørøya images were carved between 6,000 and 9,000 years ago. That makes them the oldest known boat images in Europe and among the oldest in the world. (The boat drawers of Sørøya were certainly not the first boat builders, however; Australia was settled as early as 37,000 years ago by people who must have arrived in boats.)

Who were the early inhabitants of Sørøya? The answer is not clear. Ten thousand years ago, as the ice sheet covering Scandinavia began to shrink, northern Norway is thought to have been colonized from two directions: from the east, by hunters from the Russian steppes who were pursuing migrating game such as reindeer, and whose rock carvings of reindeer have been found not far from Sørøya; and from the south, by people from the Norwegian mainland; and from the south, by people who made their way up Norway's ice-free west coast. At the moment there is no way of telling which direction the Sørøysans came from—or whether it was both south and east.

Certainly they were accomplished sailors, because their settlements have been found on islands even farther from the coast than Sørøya. And surely, says Hesjedal, they could not have survived on the occasional reindeer; they must have eaten fish and sea mammals, both of which are plentiful in the rich, Gulf Stream-warmed waters off northern Norway. Curiously, though, apart from two murky drawings that may represent whales, no sea creatures are depicted in the rock carvings from Sørøya.

"Until this discovery, the predominant theory about northern rock art was that it represented a Stone Age menu, a list of the foods people ate," says Hesjedal. "Yet we don't find these sea-based species in this art. Instead we find land mammals such as bear and elk, which were not an important part of the diet. That's why we think of the rock art as metaphors, symbols of something else, like totems." Indeed, some of the boats in the Sørøya drawings have reindeer in them, which suggests to Hesjedal that the artists were depicting a fantasy world—perhaps, by having come into contact with an inland community of reindeer hunters.

Hesjedal and his colleagues have found far more than rock carvings on Sørøya: scattered pieces of red ocher that might once have been used to color the carvings, remains of turf houses from later settlements, and arrowheads that are even older than the art.

"On this small place," says Hesjedal, "we have documented continuous settlement during the past 10,000 years. This is a unique situation. It makes us able to study in great detail the changes that took place over a very long span of time."
Even Stone Age teens enjoyed a tasty chaw

STOCKHOLM, Sweden (AP) — Archaeologists have found chewing gum believed to be 9,000 years old, and tooth marks showed it had been chewed on by a Stone Age teenager, a report said Saturday.

The dark-colored gum was made of resin sweetened with honey, the Expressen newspaper said.

Archaeologist Bengt Nordqvist was quoted as saying the gum may be the oldest found in the world. It was among finds at an excavation of a small Stone Age community outside Ellos in western Sweden.
timeline:

1. 12,000BC the ice which covered the north began to melt
2. 8000-2500BC the elder stone age: find a few dwellings and livelihood from hunting and fishing
3. 2400-1500BC newer stone age: first traces of some cultivation; inscriptions carved in stone of animals
4. 1500-500BC The Bronze Age: find bronze articles made for a class of overlords; trade, seafaring, agriculture. The carvings in rock show some agriculture/sowing.
5. 500BC to Millennium of time: Celtic Iron age: the first traces of gaards; stone-covered graves and buried urns in stone-lined graves
6. 0-400AD Roman iron age: huge burial mounds—symbols of tribal traditions and kinship pride (pride in kinship)
7. 400-600 AD Periods of internal expansion/migrations—gaards with long houses; bygde (main gaard in an area borgar—fortresses; runic alphabet first found.
8. 600-800 Merovingian Period; cultural exchange from France; hammered instruments and plows; long, one-edged swords
9. 800-1030 Viking Age: Viking campaigns; intensive cultivation of new soils; strong increase in trade; rich grave finds a'la Oseberg and Gokstad ships
10. 1030-on: Middle ages: churches, Christian art; the first towns (cities).